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ABSTRACT

Two accepted postulates for applications of ground-based weather radars are that Earth’s surface is a

perfect sphere and that all the rays launched at low-elevation angles have the same constant small cur-

vature. To accommodate a straight vertically launched ray, we amend the second postulate by making the

ray curvature dependent on the cosine of the launch angle. A standard atmospheric stratification de-

termines the ray-curvature value at zero launch angle. Granted this amended postulate, we develop exact

formulas for ray height, ground range, and ray slope angle as functions of slant range and launch angle on

the real Earth. Standard practice assumes a hypothetical equivalent magnified earth, for which the rays

become straight while ray height above radar level remains virtually the same function of the radar co-

ordinates. The real-Earth and equivalent-earth formulas for height agree to within 1m. Our ultimate goal is

to place a virtual Doppler radar within a numerical or analytical model of a supercell and compute virtual

signatures of simulated storms for development and testing of new warning algorithms. Since supercell

models have a flat lower boundary, we must first compute the ray curvature that preserves the height

function as the earth curvature tends to zero. Using an approximate height formula, we find that keeping

planetary curvature minus the ray curvature at zero launch angle constant preserves ray height to within

5 m. For standard refraction the resulting ray curvature is negative, indicating that rays bend concavely

upward relative to a flat earth.

1. Introduction

The radar-measurable variables that identify a target’s

position are slant range, which is calculated from the

time delay between transmitted and received pulses,

the elevation angle of the radar ray at the radar an-

tenna (hereafter called the launch angle), and the

azimuth angle of the ray. Hence, the radar coordi-

nates, which are intrinsic to data collection, are slant

range r (arc length along a stationary ray), azimuth b,

and launch angle a. Important quantities not mea-

sured directly but derived from the radar variables

are ray height above radar level, ground range, and

ray slope angle.

Accepted postulates for applications of ground-based

weather radars are (i) that the surface of the Earth1 is a

perfect sphere level with the radar antenna and (ii) that

the rays are circular with constant curvature (typically

much less than Earth curvature). A standard atmospheric

stratification determines the value of the ray curvature

(Doviak and Zrnić 2006, 19–21; Petrocchi 1982). As

pointed out by Askelson (2002), postulate (ii) excludes

the straight vertically launched ray. Here we amend

postulate (ii) by allowing ray curvature to vary with the

cosine of the launch angle. Granted this amended pos-

tulate, we develop exact formulas for the derived vari-

ables as functions of slant range and launch angle. These

formulas are constrained by the properties of a vertically

a Emeritus.
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launched ray. At a launch angle of 908, the formulas satisfy

the correct conditions of zero ray curvature, zero ground

range, constant ray slope angle of 908, and equality of slant

range and height.

Assuming a flat earth instead of a spherical one and

ignoring atmospheric refraction (case 1, Fig. 1) yields

simple formulas that are sufficient for ranges only up to a

few tens of kilometers (Xu and Wei 2013). At longer

ranges serious height errors occur owing to absence of

both earth curvature and ray curvature. For computing

the signatures of simulated storms with a virtual Doppler

radar, keeping the model’s flat earth and calculating an

adjusted ray curvature, which preserves the height func-

tion (i.e., the dependence of height on slant range and

launch angle) to an excellent approximation, is the most

practical approach (case 2, Fig. 2). Standard practice,

following Schelleng et al. (1933), postulates an equivalent

magnified earth, for which the rays become straight (case

3, Fig. 3). Keeping the relative curvature (the planetary

curvature minus a constant ray curvature) invariant

determines the radius of the equivalent earth. Schelleng

et al. demonstrated that for nearly horizontal rays the

equivalent-earth model closely replicated results from

their real-Earth model. Note however that, unlike the

equivalent-earth model, their real-Earth model cannot

imitate a vertically launched ray or rays with consider-

able slopes. For atmospheric observations, we can retain

the real-Earth curvature and assume ray curvature that

varies with the cosine of the launch angle (case 4, Fig. 4).

This provides us with formulas for the actual Earth that

are correct for the vertically launched straight ray and

agree very closely with those of the equivalent-earth

model. The invariant quantity is now the relative curva-

ture evaluated at zero launch angle. Thus, we can derive

from our real-Earth model the adjusted ray curvature

required in a flat-earth model to preserve the height

function.

In section 2 we derive exact solutions for ray height,

ground range, and ray slope angle as functions of slant

range and launch angle. These solutions are exact only

as far as the amended postulates are true. Section 3

tailors these solutions to specific geometries, namely

flat earth, equivalent earth, and actual Earth. At this

stage the radius of the equivalent earth and the ray

curvature to be used on a flat earth are unspecified. In

section 4 we find an approximate solution for ray height

that is accurate to within 7m for ranges up to 250 km.

This solution depends on the curvatures only via the

relative curvature of a ray launched horizontally. This

relationship enables us to find the appropriate ray cur-

vature for a flat earth and the radius of an equivalent

earth that retain the same function for height versus slant

range and launch angle as on the real Earth. Section 5

contains sample calculations in the different cases of

height, ground range, and slope angle for slant ranges

and launch angles that span the values used by operational

WSR-88Ds on thunderstorm days [this span is evident in

Fig. 1 of Xu and Wei (2013)]. We present conclusions

and planned future work in section 6.

FIG. 1. Schematic illustrating straight rays launched at angles

08 (blue), 108 (green), 208 (red), and 908 (orange) in an azimuthal-

vertical plane over a flat earth surface (hatched). In this case there

is no atmospheric refraction. The radar antenna is at O and P is a

measurement point at slant range r and height z1 on a ray launched

at an angle a 5 208; Q is the surface point on the vertical line

through P (dashed black line). It is at ground range OQ 5 s1. The

ground surface coincides here with the tangent plane so H1 5 z1
and S1 5 s1.

FIG. 2. As in Fig. 1, but for negatively curved (concave upward,

kf , 0) rays over a flat earth. The vertically launched ray is straight.

The ground and tangent plane are coincident soHf5 zf, the heightQP

ofP, andSf5 sf, the ground rangeOQ.K0,K10, andK20 are the centers

of curvature and K0O, K10O, and K20O are radii for circular rays

launched from the radar O at angles a5 08, 108, and 208, respectively.
According to (8) with kf , 0 the centers of curvature all lie in a plane

parallel to and above the ground.The slant range rofP is the arc length

OP. The rays’ negative curvatures are chosen to force the heights of

the rays above the flat earth and the heights of positively curved rays

over the actual Earth with standard atmospheric refraction to closely

approximate the same functions of slant range and launch angle.
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2. Ray geometry and height

As customary (Doviak and Zrnić 2006, 18–23), we as-

sume that the planetary surface is a sphere with radius a

equal to the distance from the planet’s center C to the

radar antenna at O and that a ray has constant curvature

k owing to refraction by the atmosphere. Subscripts4, f,

and e pertain to actual-Earth, flat-earth, and equivalent-

earth values, respectively, and the term ‘‘planet’’ refers

to either the real Earth (a4 ’ 6371km), or a flat earth

(af ’ ‘) as assumed in supercell models, or a hypothetical

equivalent earth (of radius ae 5 1.21a4, see section 4), for

which the rays under standard refraction are straightened.

The curvature k is positive (negative) if the ray is concave

downward (upward). From Doviak and Zrnić [2006, their

Eq. (2.24a)], an approximate formula for ray curvature is

k5
2dn/dz

11 (dz/ds)2
h i1/2 , (1)

where z is height above antenna level, s is ground range

from the antenna, and n(z) is refractive index in a typical

spherically stratified atmosphere. Doviak and Zrnić

assume that n is a linear function of height and that el-

evation angles are small so that (dz/ds)2 is negligible.

Under these conditions all rays are circular arcs with the

same curvature.Herewe depart from the approximation

of small elevation angle by assuming that dz/ds is ap-

proximately equal to tan a. Thus,

k5 k
0
cosa , (2)

where k0 [ 2dn/dz is the curvature of rays launched at

a 5 08. In this approximation, all nonvertical rays are

still arcs of circles but the curvature varies from ray to

ray according to the cosine of launch angle.

We use two coordinate systems, Cartesian coordinates

associated with the tangent plane at the radar and right-

handed curvilinear nonorthogonal coordinates that are

radar-measured position identifiers. The position vector

in the Cartesian system isX[Xi1Yj1Hkwhere i, j, k

FIG. 3. Hypothetical straightened rays launched at angles a 5 08
(blue), 108 (green), 208 (red), and 908 (orange) from a radar antenna at

Oon an enlarged equivalent earth (cross-hatched)with center at C; P is

a measurement point on a ray launched at an angle a 5 208. The slant
range r is the straight-line distance from O to P. The red, long-dashed

line PQ is the vertical through P to the ground point Q. The length of

QP is the height ze of P. The length OQmeasured along the surface of

the equivalent earth is the ground range se. The tangent plane at O is

coincident with the a5 08 surface. The length NP of the perpendicular

from P to the tangent plane at N is He and the distance of N from the

radar at O is Se. The radius ae of the equivalent earth is chosen so that

the heights of the straight rays and the heights of positively curved rays

over the actual Earth with standard atmospheric refraction are very

nearly the same functions of slant range and launch angle.

FIG. 4. Positively curved rays (k4. 0) launched at a given azimuth

angle froma radar antenna atOon the real Earth (cross-hatched)with

center at C. The diagram is drawn to scale for standard refraction

but the rays (circular arcs apart from the straight orange vertically

launched ray) are unrealistically long for purposes of illustration.

K0, K10, and K20 are the centers of curvature and K0O, K10O, and

K20O are the radii for the blue, green, and red rays launched at

angles a 5 08, 108, and 208, respectively. Owing to the amended

postulate, the centers of curvature all lie in a plane specified by (8).

This plane is parallel to and below the tangent plane at O because

the ray curvature is positive. P is a measurement point on a ray

launched at an anglea5 208. The slant range r is the arc length along
the ray from O to P. The red, long-dashed straight line PQ is the

vertical through P to the surface point Q. The length of QP is the

height z4 of P. The length OQ measured along the surface of

the Earth is the ground range s4 of P. NP is the perpendicular from

P to the tangent plane ON. The length of NP is H4 (,0 in this di-

agram since P is below the tangent plane) and the distanceON isS4.
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form an orthonormal basis with i eastward, j northward,

and k upward at the radar antenna O. Note that these

fixed vectors are either parallel or normal to the tan-

gent plane at O and do not follow the planetary surface

if it is curved. Consider a measurement point P and its

projection N onto the tangent plane. The Cartesian

coordinate H of P is the height of P above the tangent

plane and the coordinatesX andY are, respectively, east

and north distances to N from the radar. The curvilinear

coordinates (r, a, b) are based on the geometry of the

radar ray. The origin is at the radar antenna O and r is

the slant range (defined as arc length distance from O

along a ray to the measurement point P), a is the launch

angle of the ray, and b is the ray azimuth anglemeasured

clockwise from due north. Angles are measured in ra-

dians unless stated otherwise.

Figure 5 illustrates the geometry of an individual radar

ray relative to the planet. In a plane of constant azimuth

b, the ray’s center of curvature is at K and the position

vector X of a measurement point P is a chord OP of the

ray’s circular path with length (2/k) sin (kr/2) [Askelson

2002, his Eq. (2.3)]. The elevation angle of the chord

relative to the tangent plane isa2 kr/2. The equation of a

stationary ray (a5 const. and b5 const.) parameterized

by arc length distance r from the radar is therefore

X(r,a,b)5X i1Y j1H k5Sm̂1H k , (3)

where

H(r,a)5
2

k
sin
�kr
2

�
sin
�
a2

kr

2

�
,

S(r,a)5
2

k
sin
�kr
2

�
cos
�
a2

kr

2

�
,

X(r,a,b)5S(r,a) sinb ,

Y(r,a,b)5S(r,a) cosb , (4)

defines (X,Y,H) in terms of the radar coordinates (r,a,b).

Here S 5 (X2 1 Y2)0.5 is distance in the tangent plane

and the unit vector m̂[ sinb i1 cosb j is along the ray’s

azimuth. Use of trigonometric identities gives us the

alternative formulation

FIG. 5. Geometry of a ray launched froma radar atOat azimuthal angleb andelevation anglea to

a general measurement point P(r, a, b). The ray follows the circular arc OP of arc length r, radius

1/k4 5 KO 5 KP, and center of curvature K. The Earth’s surface, assumed spherical, is cross-

hatched; Q is the point on the Earth’s surface vertically belowP; z45 PQ is the height of P; s4 is the

ground range (distance fromO toQalong theEarth’s surface); a45CO5CQ is theEarth’s radius;

and C is the center of the Earth. The ray turns through an angle k4r between O and P so the ray’s

elevation angle at P relative to the tangent plane at O is a2 k4r (depicted, 0). Its elevation angle

relative to the local horizontal at Q is a 1 s4/a4 2 k4r where s4/a4 5 :OCP. The chord OP

subtends an angle k4r at K so its length is (2/k4) sin(k4r/2). Since KOP is an isosceles triangle,

:KOP5 p/22 k4r/2. The depression angle of KO is p/22 a and so the elevation angle of OP is

a 2 k4r/2, both relative to the tangent plane at O. The unit vectors (all in the ray’s azimuthal

plane unless otherwise noted) are k, the local vertical atO; m̂[ sinb i1 cosb j, the local horizontal

at O; u3 (not shown)[ cosb i2 sinb j, the unit vector normal to the azimuthal plane; r̂5 cos(a2
k4r) m̂ 2 sin(a 2 k4r) k, the tangent to the ray at P; ŝ 5 cos(s4/a4) m̂ 2 sin(s4/a4) k, the
tangent to the Earth at Q; and ẑ 5 sin(s4/a4) m̂ 1 cos (s4/a4) k, the upward vertical at P.
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X(r,a,b)5S(r,a)m̂(b)1H(r,a)k

5

�
sinkr

k
cosa1

12 coskr

k
sina

�
m̂(b)

1

�
sinkr

k
sina2

12 coskr

k
cosa

�
k . (5)

Since jkrj ,, 1 and cos kr is very nearly 1, we should

always compute 1 2 cos kr using the equivalent ex-

pression 2 sin2 (kr/2). From (5) it is evident that

S5
sinkr

k
cosa1

12 coskr

k
sina ,

H5
sinkr

k
sina2

12 coskr

k
cosa (6)

in the cases in Figs. 2 and 4, for which k 6¼ 0. For the cases

in Figs. 1 and 3, we take the limit as k/ 0 and thus obtain

S5 r cosa, H5 r sina . (7)

The center of curvature K of a ray is at

(S,H)
K
5

1

k
(sina,2cosa)5

1

k
0

(tana,21) (8)

owing to (2). Thus, the centers of curvature all lie in a

plane parallel to the tangent planeH5 0 (see Figs. 2, 4).

The separation distance of the two planes is equal to the

radii of those rays that are launched horizontally.

Given the Cartesian coordinates of points in a nu-

merical or analytical model we may wish to obtain their

radar curvilinear coordinates. This is done as follows.

Let R 5 (S2 1 H2)0.5 be the straight-line distance of P

from O. Then it follows from (4) that

R5
2

k
sin

kr

2
, (9)

H5R sin
�
a2

kr

2

�
. (10)

From (10), (9), and (4),

a5 sin21H

R
1 sin21kR

2
, (11)

r5
2

k
sin21kR

2
if k 6¼ 0,

5R if k5 0

(12)

b5 sin21X

S
and cos21Y

S
. (13)

In cases 2 and 4 where k5 k0 cosa 6¼ 0, we solve (11) for

a by Newton’s method.

A ray launched at zero elevation angle and refracted

with the planet’s curvature 1/a, follows the planet’s sur-

face. Thus, we obtain the equation of the planet’s surface

from (4) and (5) by setting a5 0 and replacing k with 1/a

and r with s, the ground range OQ (measured along the

planet’s surface). Therefore, the position vectors Y(s, b)

of points on the surface are

Y(s,b)5 a sin
s

a
m̂1 a

�
cos

s

a
2 1
�
k . (14)

The unit tangent to the planet in the direction of in-

creasing s at constant azimuth is

ŝ[
›Y

›s
5 cos

s

a
m̂2 sin

s

a
k , (15)

and the one in the direction of increasing b with

constant s is

u
3
5

dm̂

db
5 cosb i2 sinb j . (16)

The unit outward normal to the planet is

ẑ[u
3
3 ŝ5 sin

s

a
m̂1 cos

s

a
k . (17)

The position vector Z from O of a measurement point

P on a vertical at height z above the planet’s surface is

equal to the position vector of C from O plus the posi-

tion vector of P from C (see Fig. 5). In other words,

OP
�!

5OC
��!

1 CP
�!

0

Z52ak1 (a1 z)ẑ .
(18)

The equation of a vertical is therefore

Z(s,b, z)5 (a1 z) sin
s

a
m̂1

h
(a1 z) cos

s

a
2 a
i
k . (19)

As a / ‘ (cases 1 and 2),

Z/ sm̂1 zk (20)

Since (5) and (19) evaluated at P both provide the

position vector of P, we require that

Sm̂1H k5

8<
: (a1 z) sin

s

a
m̂1

h
(a1 z) cos

s

a
2 a
i
k in cases 3 and 4

sm̂1 zk in cases 1 and 2

(21)
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By equating components in (21) we find in cases 1 and 2

s5S, z5H . (22)

Similarly, we obtain in cases 3 and 4

S5 (a1 z) sin
s

a
, (23)

a1H5 (a1 z) cos
s

a
. (24)

By eliminating a 1 z from (23) and (24) we obtain

s(r,a)5 atan21 S
a1H

(25)

and by adding the square of (23) to the square of (24)

and solving for z we get

z(r,a)5 [(a1H)2 1S2]1/22a . (26)

Relative to the local horizontal, the slope angle u of a

ray at a data point P equals the launch angle plus the angle

that the planet’s surface turns through from the radar at O

to the surface point Q beneath P minus the angle of

refraction that the ray bends through fromO to P. Thus,

the ray slope angle is

u5a1
s

a
2kr . (27)

For computing the signatures of simulated storms with

a virtual Doppler radar, (s, a, b) coordinates are more

convenient than (r, a, b) since s is readily available and r

is not. Let P be a point at a given ground range on a

specific ray identified by its launch angle and azimuth.

We require the slant range of P in order to compute the

height of P and the ray’s slope angle at P in order to

compute Doppler velocity. Thus, we need in the various

cases the inverse relationships for the slant range r as a

function of the ground range s and launch angle a. These

are obtained in the appendix.

3. Compiling the formulas for each case

We now assemble the formulas for each case from the

equations in section 2 and the appendix. In the trivial case

1 (Fig. 1) of a flat earth with no atmospheric refraction

(denoted by subscript 1), the height, slant range-ground

range relationships and the ray slope angle are simply

z
1
5H

1
5 r sina, s

1
5S

1
5 r cosa ,

r5 s
1
/cosa, u

1
5a .

(28)

For case 3, which is no refraction on an equivalent earth

(denoted by subscript e), we have from (7), (25)–(27),

and (A3),

S
e
5 r cosa, H

e
5 r sina , (29)

s
e
5 a

e
tan21 r cosa

a
e
1 r sina

, (30)

z
e
5 a

e

�
11

2r

a
e

sina1
r2

a2e

�1/2

2a
e
. (31)

u
e
5a1 s

e
/a

e
, (32)

r5
a
e
sin(s

e
/a

e
)

cos(a1 s
e
/a

e
)

(33)

(see Fig. 3). We find the ae of the equivalent earth in

section 4. Case 3 approaches case 1 in the limit as ae/ ‘.
For flat-earth geometry (case 2, Fig. 2), we set k 5 kf

where subscript f denotes flat and let 1/a / 0. The

modified ray curvature for a flat earth is determined in

section 4. Figure 6 depicts the geometry of the radar

beam over a flat earth. For this geometry the ground

coincides with the tangent plane so zf 5 Hf and sf 5 Sf.
In a plane of constant azimuth b0, the ray’s center of

curvature is at K and the position vector x[ xi1 yj1zk

of a measurement point P is a chord OP of the ray’s cir-

cular pathwith length (2/kf) sin (kfr/2). The elevation angle

of the chord relative to the earth’s surface is a 2 kf r/2.

For a flat earth, it is evident from Fig. 6 or from (6), (22),

(27), and (A8) that

s
f
5S

f
5

sink
f
r

k
f

cosa1
12 cosk

f
r

k
f

sina , (34)

z
f
5H

f
5

sink
f
r

k
f

sina2
12 cosk

f
r

k
f

cosa , (35)

u
f
5a2 k

f
r , (36)

r5
1

k
f

[a1 sin21(k
f
s
f
2 sina)] . (37)

As kf / 0, (34)–(37) tend to the case 1 formulas in (28).

In case 4 (Figs. 4, 5) for the real Earth (denoted by

subscript 4) we have from (6), (25)–(27), and (A7)

S
4
5

sink
4
r

k
4

cosa1
12 cosk

4
r

k
4

sina , (38)

H
4
5

sink
4
r

k
4

sina2
12 cosk

4
r

k
4

cosa , (39)

s
4
5 a

4
tan21

S
4

a
4
1H

4

, (40)

z
4
5 [(a

4
1H

4
)2 1S2

4]
1/2
2a

4
, (41)
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u
4
5a1

s
4

a
4

2k
4
r , (42)

r5
1

k
4

(
a1

s
4

a
4

1 sin21

"
a
4
k
4
sin

s
4

a
4

2 sin

 
a1

s
4

a
4

!#)
.

(43)

Note that taking the limit as a/ ‘ in (38)–(43) yields the

flat-earth formulas (34)–(37) (with change of subscript).

Similarly, (38)–(42) revert to the equivalent-earth coun-

terparts (29)–(32) in the limit as k / 0. [Although (43)

does not tend obviously to (33) in this limit, it is a result of

(A5) which does, as shown in the appendix.]

4. Parameter determination

Wemake small angle approximations in this section to

find the equivalent curvatures that preserve the height

function approximately across different planet geometries.

First note that in case 1 there are no curvature parameters

to adjust to reach agreement with the real-Earth case 4.

Consequently, thismodel greatly underestimates the beam

height at long range. Its slope angle is an inaccurate esti-

mate as it does not vary from the launch angle.

Obtaining the following approximate formula for height

reveals how to adjust curvatures for different geometries.

For typical ray curvatures k4r is a small quantity since it

is less than 1022 for ranges up to 250 km. Thus we may

approximate sin k4r by k4r and 12 cosk4r by (k4r)2/2

in (38) and (39), which become

S
4
’ r cosa1 k

4
r2 sina/2 ,

H
4
’ r sina2 k

4
r2 cosa/2: (44)

Substituting (44) into (41) produces

z

a
4

’211

"
11

2r

a
4

sina

1
r2

a24

�
12 a

4
k
4
cosa1

k2
4r2

4

�#1/2
. (45)

where the crossed out term is negligible. Askelson (2002)

derived a height formula [his (2.4c)] that is equivalent to

(45). By series expansion in r/a (,0.04)

z

a
4

5
r

a
4

sina1
r2

2a24
(12 a

4
k
4
cosa2 sin2a)1O

�
r3

a34

�
.

(46)

Thus, an approximate formula for height on the real

Earth is

z
a
’ r sina1

r2 cos2a

2

 
1

a
4

2 k
0

!
, (47)

FIG. 6. As in Fig. 5, but for a flat earth (1/af5 0). The curvature kf is negative so the ray is now

concave upward. The angle OKP 5 the slant range r divided by the radius of curvature 1/jkfj.
Since OKP is an isosceles triangle, the length of the chord OP is (2/kf) sin(kf r/2). The angle x is

the angle between the chord OP and the tangent to the ray at O. Since the four separate angles

at O add up to p, x 5 p 2 (p/22 a)2 (p/22 jkfj r/2)2 a5 jkfj r/2. Therefore, the elevation
angle of the position vectorOP isa2 kf r/2 (since kf, 0). The height of P is zf5OP sin(a1 x)5
(2/kf) sin(kf r/2) sin(a2 kf r/2) and its ground range is sf5 (2/kf) sin(kf r/2) cos(a2 kf r/2). The ray

turns through the angle jkfj r so the beam slope angle at P is a 2 kf r.
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where we have used (2) and the subscript a denotes

approximate. For rays launched at elevation angles

greater than 608 and measurement points at heights

less than 16 km above radar level (with resultant slant

ranges less than 19 km) the second term on the right

of (47) is less than 6m. Thus, the height becomes

practically independent of the curvatures at large a.

In particular, for a ray launched vertically za 5 r as it

should. For operational launch angles, the approxi-

mate ray height depends on a4 and k0 only in the

combination 1/a4 2 k0, which is the Earth’s curvature

minus the curvature of a ray launched horizontally.

This enables the definition of an equivalent earth of

radius ae on which the radar beams are straight (ke 5 0)

and the ray height is virtually the same as on the

real Earth. The required curvature of the equivalent

earth is

1

a
e

5
1

a
4

2 k
0

(48)

(Table 1). For refraction in the U.S. standard atmo-

sphere ae 5 4a4/3 (Doviak and Zrnić 2006, p. 21),

which requires k0 5 1/(4a4) according to (48). Here

we adopt the standard refraction formula used by

the Open Radar Product Generator of the WSR-88D

(NEXRAD) radar network (Stumpf et al. 2005). In

this formula ae 5 1.21a4 (Petrocchi 1982), which by

(48) corresponds to k0 5 1/(5.76a4) for our use in the

exact formulas in section 2.

On a flat earth the ray curvature kf that keeps the

ray curvature at zero launch angle minus the planetary

curvature invariant and thus preserves the height-slant

range relationship is

k
f
5

 
k
0
2

1

a
4

!
cosa5

�
1

5:76
2 1

�
cosa

a
4

(49)

(see Table 1). Since kf , 0 the rays are concave upward

(Xu and Wei 2013). Table 1 summarizes the curvature

formulas for the different earths.

We now have a way to investigate the dependence

of vortex signatures on range. Our method utilizes a

Doppler-radar simulator to obtain at different ranges

the Doppler-velocity patterns either of simple ana-

lytical vortex flows (e.g., Davies-Jones and Wood

2006)2 or of velocity fields produced in a numerical

simulation of a supercell above a flat lower boundary

(Wood et al. 2018). Formula (49) provides ray cur-

vature as a function of launch angle a. We use the

relationship (37) [or (A8)] to determine arc lengths r

along rays at specified ground ranges s. We then use (35)

to compute the heights of ray points. From (36) we

calculate the ray slope angles that are needed in calcu-

lations of Doppler velocities.

5. Results

In the volume coverage patterns used by operational

WSR-88D weather radars to scan thunderstorms, the

launch angle a varies from 0.58 to 19.58 and the slant

range r extends to around 250km.The paired values (r,a)

in Tables 2–4 represent observation points on the lowest

ray and near the tops of storms.

We performed calculations with double precision (15

significant digits) rather than single precision (7 signifi-

cant digits) so that we could compute small differences in

height accurately. Recall from section 2 that for accurate

computation 1 2 cos kr should be replaced everywhere

by the equivalent expression 2 sin2(kr/2). Table 2 shows,

for the selected values of r and a, the height in the

equivalent-Earth model, which is the one in standard

use, and the deviations from this height in models with

different geometries. The height error in case 1 (flat

earth, no refraction) is excessive [as depicted in Fig. 1

of Xu and Wei (2013) or computed from Table 2]. For

example, it is 4 km at 250 km range. The approximate

height, which pertains collectively to cases 2, 3, and 4,

deviates from the equivalent-Earth height by atmost 7m.

Height in the real-earth model (case 4) differs from that in

the equivalent-Earth model by no more than 1m. Height

on the flat earth (case 2) deviates from equivalent-Earth

height by at most 4m. The height differences in cases 2

to 4 decrease rapidly with inverse range and are trivial

TABLE 1. Planetary curvature 1/a and ray curvature k0 cosa under

conditions of standard NEXRAD refraction for the real Earth (ra-

dius a4’ 6.3713 106m, case 4), for an equivalent earth (case 3), and

for a flat earth (case 2). In case 1 the earth is flat and there is no

refraction. In cases 2, 3, and 4 the planetary curvature minus the ray

curvature at 08 launch angle (i.e., 1/a2 k0) is invariant to keep beam

height the same function of slant range. For refraction in the U.S.

standard atmosphere instead of standard refraction, replace 1/5.76

with 1/4.

Planetary

curvature (m21)

Ray

curvature (m21)

Case 4: Real Earth,

standard refraction

1/a4 cos a/(5.76a4)

Case 3: Equivalent

earth, no refraction

(121/5.76)/a4 0

Case 2: Flat earth,

standard refraction

0 2cos a (121/5.76)/a4

Case 1: Flat earth, no

refraction

0 0

2 In Eq. (6) of Davies-Jones and Wood (2006), 2p should have

been r.
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compared to half of the half-power beamwidth of a

WSR-88D (roughly 400m at 50 km range and 2 km at

250 km). Since 08 is a possible supplemental launch

angle being tested currently at two WSR-88Ds, we

also calculated the height differences in cases 2–4 for

zero launch angle and ranges of 50, 100, 125, and 250 km.

These differences were 1m or less.

Table 2 also lists the three terms in the approximate-

height formula (47). The first term applies to straight

beams (k05 0) on a flat Earth (a5‘), the second term is

the large correction for Earth curvature, and the third

term is a smaller but still significant correction for

atmospheric refraction.

Table 3 lists deviations in cases 2–4 of ground range

s from r cosa, which is the ground range s1 in case 1

(flat earth, no refraction). The deviations increase

with planetary curvature. However, the maximum

deviation in the table is just slightly more than 0.2%

of r cosa. Using (28), (37), (33), and (A7) in cases 1–4,

respectively, recovers slant range from ground range

to well within a meter.

The beam slope angle u is essential for computing

virtual Doppler velocity from model wind fields. Since

s ’ r cos a (Table 3),

u’a1 r cosa

 
1

a
4

2 k
0

!
(50)

from (27) and (2). Thus keeping the planetary curvature

minus the ray curvature at 08 launch angle invariant

TABLE 2. Ray height ze on the equivalent earth, calculated from (31), for selected values of slant range r and launch angle a that are

chosen to approximate the extent of slant ranges and elevation angles used by operational WSR-88D radars on thunderstorm days. Also

shown are the deviations from ze of (i) z4, the exact height on the real Earth calculated from (41), (ii) zf, the height over a flat earth

calculated from (35), and (iii) za, the approximate height on the real Earth calculated from (47). The height error in case 1 is ze (column 3)2 r sina

(column 7). The approximate height za is the sum of the three terms in the last three columns. The calculated radius of the equivalent earth

and the designed ray curvature over a flat earth correspond to ray curvature k4 5 cos a/(5.76a) over the real Earth.

r (km) a (8) ze (m) z4 2 ze (m) zf 2 ze (m) za 2 ze (m) r sin a (m) 1r2 cos2a/2a (m) 2k0r
2 cosa/2 (m)

250 2.4 14 509 21 4 7 10 469 4896 2850

250 0.5 6232 0 1 2 2182 4905 2851

125 6.2 14 499 0 1 2 13 500 1212 2210

125 0.5 2104 0 0 0 1091 1226 2213

100 8.7 15 758 0 1 1 15 126 767 2133

100 0.5 1521 0 0 0 873 785 2136

50 19.5 16 834 0 0 0 16 690 174 230

50 0.5 598 0 0 0 436 196 234

TABLE 3. Slant range r times cos a minus ground range s for

selected values of slant range r and launch angle a and for different

planet geometries. Here s4, se, sf, and s1 are the ground ranges on

the real Earth, on the equivalent earth, on the flat earth with

standard refraction, and on the flat earth without refraction. Note

that r cos a2 s1 [ 0. Formulas (40), (30), (34), and (28) supply s4,

se, sf, and s1, respectively.

r (km) a (8) r cos a 2 s4 (m) r cos a 2 se (m) r cos a 2 sf (m)

250 2.4 470 426 213

250 0.5 175 158 79

125 6.2 252 228 114

125 0.5 32 29 14

100 8.7 220 199 100

100 0.5 19 17 8

50 19.5 113 102 51

50 0.5 4 4 2

TABLE 4. Beam slope angle u for selected values of slant range r

and launch angle a and for different planet geometries (real Earth,

equivalent earth, flat earth with standard refraction). For flat earth

with no refraction u 5 a. In general u 5 a 1 s/a 2 kr where the

terms s/a and 2kr are listed for each geometry.

r (km) a (8) Earth/earth 1s/a (8) 2kr (8) u (8)

250 2.4 Real 12.241 20.3899 4.2522

Equivalent 11.8533 20 4.2533

Flat 10 11.8565 4.2565

250 0.5 Real 12.2466 20.3902 2.3565

Equivalent 11.8569 20 2.3569

Flat 10 11.8580 2.3580

125 6.2 Real 11.1153 20.1940 7.1214

Equivalent 10.9219 20 7.1219

Flat 10 10.9236 7.1236

125 0.5 Real 11.1238 20.1951 1.4287

Equivalent 10.9288 20 1.4288

Flat 10 0.9290 1.4290

100 8.7 Real 10.8870 20.1543 9.4327

Equivalent 10.7332 20 9.4332

Flat 10 10.7347 9.4347

100 0.5 Real 10.8891 20.1561 1.2430

Equivalent 10.7431 20 1.2431

Flat 10 10.7432 1.2432

50 19.5 Real 10.4229 20.0736 19.8493

Equivalent 10.3495 20 19.8495

Flat 10 10.3503 19.8503

50 0.5 Real 10.4496 20.0780 0.8716

Equivalent 10.3716 20 0.8716

Flat 10 10.3716 0.8716
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preserves the slope angle well. For a flat earth with no

refraction, the slope angle is just the launch angle. This

differs from the real-Earth slope angle by almost 28 at
250 km range. In cases 2–4, the slope angles are the same

to a tolerance of 0.0058 (Table 4). The cosines and sines

of these slope angles differ insignificantly (by less than

0.0001). Table 4 also illustrates that the ray-curvature

and earth-curvature terms in the expression for slope

angle maintain nearly the same sum to make the slope

angle practically the same on the flat earth, the equiva-

lent earth and the real Earth (cases 2–4).

6. Summary

Given the assumptions that the earth’s surface is a

perfect sphere of radius a4 through the antenna and that

the radar rays have curvature k4 that varies only with the

cosine of the launch angle (our real-Earth model), we

obtain exact formulas for ray height (41), ground range

(40), and beam slope angle (42) as functions of slant range

r and launch anglea.Wefind that the heights given by the

equivalent-earthmodel agree with our real-Earth heights

to within 1m for the volume coverage patterns used by

WSR-88Ds in thunderstorm situations. We demonstrate

that to an excellent approximation ray height is the same

function of slant range if planetary curvature minus ray

curvature at zero launch angle is held constant. This al-

lows us to formulate a flat-earth model in which ray

curvature is adjusted to compensate for zero earth

curvature. The ray curvature for the flat-earth model is

provided by (49). With standard refraction ray height

varies from real Earth to flat earth by 6m atmost. The ray

curvature is negative for standard refraction, indicating

that rays bend concavely upward relative to a flat earth.

The beam slope angle is virtually the same in the real-

Earth, the equivalent-earth, and flat-earth models.

Ground range in the flat-earth model differs from its

value on the real earth because the geometrical trans-

formation to a flat earth distorts space. However, even at

long range (250km), the deviation is only around 250m,

which is the range gate resolution of a WSR-88D. For a

virtual radar inserted in a supercell model, the slant range

r is a latent variable andwe can regard the ground range sf
as an observed variable. Thus, we trace a ray launched at

an angle a by using (37) to derive r from sf, then finding

the height and slope angle of the ray from (35) and (36).

Plannedwork involves placing a virtual Doppler radar

within a numerical or analytical model of a supercell with a

flat lower boundary, and computing the virtual signatures

of simulated storms, using the ray curvatures derived

herein. Varying the radar location will enable us to in-

vestigate effects of range and viewing direction on the

magnitudes of various signatures.
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APPENDIX

Retrieving Slant Range from Ground Range

By rearranging (25), inserting (6), and using a trigo-

nometric identity, we get

a sin
s

a
5S cos

s

a
2H sin

s

a

5
sinkr

k
cosL1

12 coskr

k
sinL , (A1)

where L [ a 1 s/a. For cases 1 and 3, (A1) becomes in

the limit as k / 0

r cosL5 a sin
s

a
. (A2)

Therefore, in case 3 (equivalent earth) where a5 ae and

k / 0,

r5
a
e
sin(s

e
/a

e
)

cos(a1 s
e
/a

e
)
. (A3)

In case 1 where a / ‘ and k / 0 (flat earth, no re-

fraction), (A3) reduces to

r5 s
1
/cosa . (A4)

When k 6¼ 0 (cases 2 and 4), we canmultiply both sides

of (A1) by k and write it in the form

cosL sinkr2 sinL coskr5 ak sin
s

a
2 sinL . (A5)

Incidentally, we can recover (A3) by letting k / 0 in

(A5) and solving for r. Via a trigonometric identity (A5)

becomes

sin(kr2L)5 ak sin
s

a
2 sinL , (A6)

so the formula for the slant range r as a function of the

ground range s4 and launch angle on the real Earth

(case 4) is

r5
1

k
4

(
a1

s
4

a
4

1 sin21

"
a
4
k
4
sin

s
4

a
4

2 sin

 
a1

s
4

a
4

!#)
.

(A7)
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For the flat earth with refraction (case 2), we change

the subscripts in (A7) to f and take the limit af / ‘.
This yields

r5
1

k
f

[a1 sin21(k
f
s
f
2 sina)] . (A8)
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